R e
I iy

762 C++: The Complete Reference

commonly used services. They include a number of conversions, variable-length

The standard function library defines several utility functions that provide various

argument processing, sorting and searching, and random number generation.

Many of the functions covered here require the use of the header <cstdlib>. (A C program
must use the header file stdlib.h.) In this header are defined div_t and ldiv_t, which
are the types of values returned by div() and 1div(), respectively. Also defined is the
type size_t, which is the unsigned value returned by sizeof. The following macros

are defined:

Macro

MB_CUR_MAX
NULL
RAND_MAX

EXIT_FAILURE

EXIT_SUCCESS

If a function requires a different header than <cstdlib>, that function description

will discuss it.

abort

#include <cstdlib>
void abort (void);

The abort() function causes immediate abnormal termination of a program. Generally,
no files are flushed. In environments that support it, abort() will return an implementation-
defined value to the calling process (usually the operating system) indicating failure.

Meaning
Maximun length (in bytes) of a multibyte character.

A null pointer.

The maximum value that can be returned by the
rand() function.

The value returned to the calling process if program
termination is unsuccessful.

The value returned to the calling process if program
termination is successful.

Related functions are exit() and atexit().

abs

#include <cstdlib>

int abs(int num);

long abs(long num);
double abs (double num);

Chapter 30: Utility Functions

The abs() function returns the absolute value of num. The long version of abs() is
the same as labs(). The double version of abs() is the same as fabs().
A related function is labs().

assert

#include <cassert>

void assert (int exp);

The assert() macro, defined in its header <cassert>, writes error information to
stderr and then aborts program execution if the expression cxp evaluates to zero.
Otherwise, assert() does nothing. Although the exact output is implementation
defined, many compilers use a message similar to this:

Assertion failed: <expression>, file <file>, line <linenum>

The assert() macro is generally used to help verify that a program is operating
correctly, with the expression being devised in such a way that it evaluates to true
only when no errors have taken piace.

It is not necessary to remove the assert() statements from the source code once
a program is debugged because if the macro NDEBUG is defined (as anything), the
assert() macros will be ignored.

A related function is abort().

atexit

#include <cstdlib>
int atexit(void (*func) (void));

The atexit() function causes the function pointed to by furc to be called upon normal
program termination. The atexit() function returns zero if the function is successfully
registered as a termination function, nonzero otherwise.

At least 32 termination functions may be established, and they will be called in the
reverse order of their establishment.

Related functions are exit() and abort().

atof

#include <cstdlib>
double atof(const char *str);

763

764 C++: The Complete Reference

The atof() function converts the string pointed to by str into a double value. The
string must contain a valid floating-point number. If this is not the case, the returned
value is undefined.

The number may be terminated by any character that cannot be part of a valid floating-
point number. This includes white space, punctuation (other than periods), and characters
other than E or e. This means that if atof() is called with "100.00HELLO", the value 100.00
will be returned.

Related functions are atoi() and atol().

atoi

-

#include <cstdlib>
int atoi(const char *str);

The atoi() function converts the string pointed to by str into an int value. The
string must contain a valid integer number. If this is not the case, the returned value
is undefined; however, most implementations will return zero.

The number may be terminated by any character that cannot be part of an integer
number. This includes white space, punctuation, and characters. This means that if atoi()

is calied with "123.23", the integer value 123 will be returned, and the ".23" is ignored.

Related functions are atof() and atol().

#include <cstdlib>
long atol{const char *str);

The atol() function converts the string pointed to by str into a long value. The
string must contain a valid long integer number. If this is not the case, the returned
value is undefined; however, most implementations will return zero.

The number may be terminated by any character that cannot be part of an integer
number. This includes white space, punctuation, and characters. This means that if
atol() is called with "123.23", the long integer value 123L will be returned, and the ".23"
is ignored.

Related functions are atof() and atoi().

bsearch

#include <cstdlib>

void *bsearch(const void *key, const void *buf,

Chapter 20: Utility Functions

size_t num, size_t size,
int (*compare) (const void *, const void *));

The bsearch() function performs a binary search on the sorted array pointed to by
buf and returns a pointer to the first member that matches the key pointed to by key.
The number of elements in the array is specified by num, and the size (in bytes) of each
element is described by size.

The function pointed to by compare is used to compare an element of the array with
the kev. The form of the compare function must be as follows:

int func_name(const void *argl, const void *arg2);

It must return values as described in the following table:

Comparison Value Returned
argl is less than arg2 Less than zero
arg1 is equal to arg2 Zero

arg1 is greater than arg? Greater than zero

The array must be sorted in ascending order with the lowest address containing the
lowest element.

If the array does not contain the key, a null pointer is returned.

A related function is gsort().

div
#include <cstdlib>

div_t div(int numerator, int denominator);
1div_t div(lieong numerator, long denominator);

The int version of div() returns the quotient and the remainder of the operation
nwmerator / denominator in a structure of type div_t. The long version of div() returns
the quotient and remainder in a structure of type ldiv_t. The long version of div()
provides the same capabilities as the 1div() function.

The structure type div_t will have at least these two fields:

int quot; /* guotient */
int rem; /* remainder */

765

766 C++: The Complete Reference

The structure type ldiv_t will have at least these two fields:

long quot; /* quotient */
long rem; /* remainder */

A related function is 1div().

#include <cstdlib>

void exit(int exit_code);

The exit() function causes immediate, normal termination of a program.
The value of exit_code is passed to the calling process, usually the operating
system, if the environment supports it. By convention, if the value of exit_code is
zero, or EXIT_SUCCESS, normal program termination is assumed. A nonzero
value, or EXIT_FAILURE, is used to indicate an implementation-defined error.
Related tunctions are atexit() and abort().

getenv

#include <cstdlib>
char *getenv(const char *name);

The getenv() function returns a pointer to environmental information associated

with the string pointed to by name in the implementation-defined environmental
information table. The string returned must never be changed by the program.

The environment of a program may include such things as path names and devices
online. The exact nature of this data is implementation defined. You will need to refer

to your compiler's documentation for details.

If a call is made to getenv() with an argument that does not match any of the
environment data, a null pointer is returned.
Arelated function is system().

labs

#include <cstdlib>
long labs(long num) :

The labs() function returns the absolute value of num.
A related function is abs().

Chapter 30: Utility Functions

#include <cstdlib>
ldiv_t ldiv(long numerator, long denominator) :

The 1div() function returns the quotient and the remainder of the operation
numerator / denominator.
The structure type 1div_t will have at least these two fields:

long quot; /* quotient */
long rem; /* remainder */

A related function is div().
longjmp

#include <csetijmp>
void longjmp (jmp_buf envbuf, int status);

The longjmp() function causes program execution to resume at the point of the last
call to setjmp(). These two functions provide a means of jumping between functions.
Notice that the header <csetjmp> is required.

The longjmp() function operates by resetting the stack to the state as described
in envbuf, which must have been set by a prior call to setjmp(). This causes program
execution to resume at the statement following the setjmp() invocation. That is, the
computer is "tricked"” into thinking that it never left the function that called setjmp().
(As a somewhat graphic explanation, the longjmp() function "warps" across time and
(memory) space to a previous point in your program without having to perform the
normal function return process.)

The buffer conbuf is of type jmp_buf, which is defined in the header <csetjmp>.
The buffer must have been set through a call to setjmp() prior to calling longjmp().

The value of stafus becomes the return value of setjmp() and may be interrogated to
determine where the long jump came from. The only value that is not allowed is zero.

By far the most common use of longjmp() is to return from a deeply nested set
of routines when an error occurs.

A related function is setjmp().

mblen

#include <cstdlib>
int mblen(const char *str, size_t size);

767

768 C++: The Compiete Reference

The mblen() function returns the length (in bytes) of a multibyte character pointed
to by str. Only the first size number of characters are examined. It returns -1 on error.

If str is null, then mblen() returns non-zero if multibyte characters have state-
dependent encodings. If they do not, zero is returned.

Related functions are mbtowc() and wctomb().

mbstowcs

#include <cstdlib>
size_t mbstowcs (wchar_t *out, const char *in, size_t s:ize);

The mbstowcs() function converts the multibyte string pointed to by i1z into a wide
character string and puts that result in the array pointed to by out. Only size number of
bytes will be stored in out.

The mbstowcs() function returns the number of multibyte characters that are
converted. If an error occurs, the function returns —1.

Related functions are westombs(), mbtowec().

mbtowc

#include <cstdlib>
int mbtowc (wchar_t *out, const char *in, size_t size);

The mbtowc() function converts the multibyte character in the array pointed to by
in into its wide character equivalent and puts that result in the object pointed to by out.
Only size number of characters will be examined.

This function returns the number of bytes that are put into out. -1 is returned if an
error occurs. If in is null, then mbtowc() returns non-zero if multibyte characters have
state-dependent encodings. If they do not, zero is returned.

Related functions are mblen(), wctomb().

gsort

#inciude <cstdlib>
void gsort(void *buf, size_t num, size_t size,
int (*compare) (const void *, const void *)};

Chapter 30: Utility Functions 769

The gsort() function sorts the array pointed to by buf using a Quicksort (developed
by C.A.R. Hoare). The Quicksort is the best general-purpose sorting algorithm. Upon
termination, the array will be sorted. The number of clements in the array is specified
by 1, and the size (in bytes) of each element is described by size.

The tunction pointed to by compare is used to compare an element of the array
with the kev. The form of the compare function must be as follows:

int func_name(const void *argl, const void *arg2);

[t must return values as described here:

Comparison Value Returned
arel is less than arg2 Less than zero
arg is equal to arg2 Zero

ar¢l is greater than arq2 Greater than zero

The array is sorted into ascending order with the lowest address containing the
lowest element.
A related function is bsearch().

raise

#include <csignal>

int raise(int signal);

The raise() function sends the signal specified by signal to the executing program.
It returns zero if successful, and nonzero otherwise. It uses the header <csignal>.

The following signals are defined by Standard C++. Of course, your compiler is free
to provide additional signals.

Macro Meaning
SIGABRT Termination error
SIGFPE Floating-point error

SIGILL Bad instruction

770 C++: The Complete Reference

Macro Meaning

SIGINT User pressed CTRL-C
SIGSEGV Illegal memory access
SIGTERM Terminate program

A related function is signal().

rand

#include <cstdlib>

int rand(void);

The rand() function generates a sequence of pseudorandom numbers. Each time it
is called, an integer between zero and RAND_MAX is returned.
A related function is srand().

setjmp

#include <csetjmp>
int setjmp (jmp_buf envbuf);

The setjmp() function saves the contents of the system stack in the buffer envbuf for
later use by longjmp(). It uses the header <csetjmp>.

The setjmp() function returns zero upon invocation. However, longj mp() passes
an argument to setjmp() when it executes, and it is this value (always nonzero) that
will appear to be the value of setjmp() after a call to longjmp() has occurred.

See longjmp for additional information.

A related function is longjmp().

signal

#include <csignal>
void (*signal(int signal, void (*func) (int))) (int) ;

Chapter 30: Utility Functions

The signal() function registers the function pointed to by func as a handler for the
signal specified by signal. That is, the function pointed to by func will be called when
signal is received by your program.

The value of func may be the address of a signal handler function or one of the
following macros, defined in <csignal>:

Macro Meaning
SIG_DFL Use default signal handling
SIG_IGN Ignore the signal

If a function address is used, the specified handler will be executed when its signal
is received.

On success, signal() returns the address of the previously defined function for the
specified signal. On error, SIG_ERR (defined in <csignal>) is returned.

A related function is raise().

srand

#include <cstdlib>
void srand(unsigned seed);

The srand() function is used to set a starting point for the sequence generated by
rand(). (The rand() function returns pseudorandom numbers.)

srand() is generally used to allow multiple program runs to use different sequences
of pseudorandom numbers by specifying different starting points. Conversely, you can
also use srand() to generate the same pseudorandom sequence over and over again by
calling it with the same seed before obtaining each sequence.

A related function is rand().

strtod

#include <cstdlib>
double strtod{const char *start, char **end);

771

772

C++: The Complete Reference

The strtod() function converts the string representation of a number stored in the
string pointed to by start into a double and returns the result.

The strtod() function works as follows. First, any white space in the string pointed
to by start is stripped. Next, each character that comprises the number s read. Any
character that cannot be part of a floating-point number will cause this process to stop.
This includes white space, punctuation (other than periods), and characters other than
E or e. Finally, end is set to point to the remainder, if any, of the original string. This
means that if strtod() is called with "100.00 Pliers", the value 100.00 will be returned,
and end will point to the space that precedes "Pliers”.

If no conversion takes place, zero is returned. If overflow occurs, strtod() returns
either HUGE_VAL or -HUGE_VAL (indicating positive or negative overflow), and the
global variable errno is set to ERANGE, indicating a range error. If underflow occurs,
then zero is returned and the global variable errno is set to ERANGE.

A related function is atof().

strtol

#include <cstdlib>
long strtol(const char *start, char ~*end,
int radix);

The striol() function converts the string representation of a number stored in the
string pointed to by start into a long and returns the result. The base of the number is
determined by radix. If radix is zero, the base is determined by rules that govern constant
specification. If radix is other than zero, it must be in the range 2 through 36.

The strtol() function works as follows. First, any white space in the string pointed
to by start is stripped. Next, each character that comprises the number is read. Any
character that cannot be part of a long integer number will cause this process to stop.
This includes white space, punctuation, and characters. Finally, end is set to point to
the remainder, if any, of the original string. This means that if strtol() is called with
"100 Pliers”, the value 100L will be returned, and end will point to the space that
precedes "Pliers".

If the result cannot be represented by a long integer, strtol() returns either
LONG_MAX or LONG_MIN and the global errno is set to ERANGE, indicating
a range error. If no conversion takes place, zero is returned.

A related function is atol().

strtoul

#include <cstdlib>
unsigned long strtcul (const char *start, char **end,
int radix);

Chapter 30: Utility Functions 773

The strtoul() function converts the string representation of a number stored in
the string pointed to by start into an unsigned long and returns the result. The base
of the number is determined by radix. If radix is zero, the base is determined by rules
that govern constant specification. If the radix is specified, it must be in the range 2
through 36.

The strtoul() function works as follows. First, any white space in the string pointed
to by start is stripped. Next, each character that comprises the number is read. Any
character that cannot be part of an unsigned long integer number will cause this
process to stop. This includes white space, punctuation, and characters. Finally, end is
set to point to the remainder, if any, of the original string. This means that if strtoul()
is called with " 100 Pliers", the value 100L will be returned, and end will point to the
space that precedes "Pliers”.

If the result cannot be represented by an unsigned long integer, strtoul() returns
ULONG_MAX and the global variable errno is set to ERANGE, indicating a range
error. If no conversion takes place, zero is returned.

A related function is strtol().

system

#include <cstdlib>

int system.const char *str);

The system() function passes the string pointed to by str as a command to the
command processor of the operating system.

If system() is called with a null pointer, it will return nonzero if a command
processor is present, and zero otherwise. (Some C++ code will be executed in dedicated
systems that do not have operating systems and command processors, so you may not
be able to assume that a command processor is present.) The return value of system()
is implementation defined. However, generally it will return zero if the command was
successfully executed, and nonzero otherwise.

A related function is exit().

va_arg, va_start, and va_end

#include <cstdarg>

tvpe va_arg({va_list argptr, type);

void va_end(va_list argptr);

void va_ start(va_list argptr, last_parm);

The va_arg(), va_start(), and va_end() macros work together to allow a variable
number of arguments to be passed to a function. The most common example of

774

C++: The Complete Reference

a function that takes a variable number of arguments is printf(). The type va_list is
defined by <cstdarg>.

The general procedure for creating a function that can take a variable number of
arguments is as follows. The function must have at least one known parameter, but
may have more, prior to the variable parameter list. The rightmost known parameter is
called the last_parm. The name of last_parm is used as the second parameter in a call to
va_start(). Before any of the variable-length parameters can be accessed, the argument
pointer argptr must be initialized through a call to va_start(). After that, parameters are
returned via calls to va_arg(), with type being the type of the next parameter. Finally,
once all the parameters have been read and prior to returning from the function, a call
to va_end() must be made to ensure that the stack is properly restored. If va_end() is
not called, a program crash is very likely.

A related function is vprintf().

westombs

#include <cstdlib>

size_t wcstombs (char *cut, const wchar_t *in, size_t size);

The westombs() converts the wide-character array pointed to by in into its
multibyte equivalent and puts the result in the array pointed to by out. Only the first
size bytes of in are converted. Conversion stops before that if the null terminator is
encountered.

If successful, westombs() returns the number of bytes converted. On failure, -1
is returned.

Related functions are wctomb() and mbstowcs().

wctomb

#include <cstdlib>

g@ﬁ int wctomb{char *out, wchar_t in);
(ﬁ
L

The wctomb() converts the wide character in in into its multibyte equivalent and
puts the result in the object pointed to by out. The array pointed to by o:1f must be at
least MB_CUR_MAX characters long.

If successful, wetomb() returns the number of bytes contained in the multibyte
character. On failure, -1 is returned.

If out is null, then wetomb() returns nonzero if the multibyte character has state-
dependent encodings and zero if it does not.

Related functions are westombs() and mbtowc().

